Классическое и статическое определения вероятности. Классическая и статистическая вероятность

Понятие вероятности события относится к фундаментальным понятиям теории вероятностей. Вероятность - это количественная мера возможности появления случайного события А. Обозначается она Р(А) и имеет следующие свойства.

Вероятность есть положительное число, заключенное в интервале от нуля до единицы:

Вероятность невозможного события равна нулю

Вероятность достоверного события равна единице

Классическое определение вероятности. Пусть = { 1 , 2 ,…, n } - пространство элементарных событий, которые описывают все возможные элементарные исходы и образуют полную группу несовместных и равновозможных событий. Пусть событию А соответствует подмножество m элементарных исходов

эти исходы называют благоприятствующими событию А. В классическом определении вероятности полагают, что вероятность любого элементарного исхода

а вероятность события А, которому благоприятствуют m исходов, равна

Отсюда определение:

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Вероятность определяется формулой

где m - число элементарных исходов, благоприятствующих событию А, а _ число всех возможных элементарных исходов испытания.

Классическое определение вероятности дает возможность в некоторых задачах аналитически вычислить вероятность события.

Пусть проводится опыт, в результате которого могут наступить те или иные события. Если эти события образуют полную группу попарно несовместных и равновозможных событий, то говорят, что опыт обладает симметрией возможных исходов и сводится к "схеме случаев". Для опытов, которые сводятся к схеме случаев, применима классическая формула вероятности.

Пример 1.13. В лотерее разыгрывается 1000 билетов, среди которых 5 выигрышных. Определить вероятность того, что при покупке одного билета лотереи будет получен выигрыш

Элементарным событием этого опыта является покупка билета. Каждый билет лотереи неповторим, так как имеет свой номер, и купленный билет не возвращается обратно. Событие А заключается в том, что куплен выигрышный билет. При покупке одного из 1000 билетов всевозможных исходов этого опыта будет =1000, исходы образуют полную группу несовместных событий. Число исходов, благоприятных событию А, будет равно =5. Тогда вероятность получить выигрыш, купив один билет, равна

Р(А) = = 0.005

Для непосредственного подсчета вероятностей удобно применять формулы комбинаторики. Покажем это на примере задачи выборочного контроля.

Пример 1.14 Пусть имеется партия из изделий, среди них есть бракованных. Для контроля отбирается часть из изделий. Какова вероятность того, что среди отобранных изделий будет ровно бракованных

Элементарным событием в этом опыте является выбор элементного подмножества из исходного элементного множества. Выбор любой части изделий из партии в изделий можно считать равновозможными событиями, поэтому данный опыт сводится к схеме случаев. Для вычисления вероятности события А={среди изделий бракованных, если они отбирались из партии в изделий с бракованными} можно применить классическую формулу вероятности. Число всех возможных исходов опыта - это число способов, которыми можно отобрать изделий из партии в, оно равно числу сочетаний из элементов по: . Событие, благоприятное событию А, состоит из произведения двух элементарных событий: {из бракованных изделий выбраны }{из _ стандартных изделий выбраны _}. Число таких событий, в соответствии с правилом умножения комбинаторики, будет

Тогда искомая вероятность

Например, пусть =100, =10, =10, =1. Тогда вероятность того, что среди отобранных 10 изделий будет ровно одно бракованное, равна

Статистическое определение вероятности. Для того, чтобы применить в условиях данного опыта классическое определение вероятности, необходимо, чтобы опыт соответствовал схеме случаев и для большинства реальных задач эти требования практически невыполнимы. Однако вероятность события - это объективная реальность, которая существует независимо от того, применимо или нет классическое определение. Возникает необходимость в другом определении вероятности, применимом тогда, когда опыт не отвечает схеме случаев.

Пусть эксперимент заключается в проведении серии испытаний, повторяющих один и тот же опыт, и пусть событие А наступило раз в серии из опытов. Относительной частотой события W(A) называют отношение числа опытов, в которых наступило событие А, к числу всех проведенных опытов

Экспериментально доказано, что частота обладает свойством устойчивости: если число опытов в серии достаточно велико, то относительные частоты события А в различных сериях одного и того же эксперимента мало отличаются друг от друга.

Статистической вероятностью события называют число, к которому стремятся относительные частоты, если число опытов неограниченно возрастает

В отличие от априорной (вычисленной до опыта) классической вероятности статистическая вероятность является апостериорной (полученной после опыта).

Пример 1.15 Метеорологические наблюдения в течении 10 лет в некоторой местности показали, что число дождливых дней в июле было в разные года равно: 2; 4; 3; 2; 4; 3; 2; 3; 5; 3. Определить вероятность того, что какой-либо определенный день июля будет дождливым

Событие А заключается в том, что определенный день июля, например, 10 июля, пойдет дождь. Выданная статистика не содержит информации о том, в какие конкретно дни июля шел дождь, поэтому можно считать, что все дни равновозможные для этого события. Пусть один год - это одна серия испытаний из 31 одного дня. Всего серий 10. Относительные частоты серий равны:

Частоты различны, но наблюдается их группировка возле числа 0.1. Это число и можно принять за вероятность события А. Если за одну серию испытаний принять все дни июля за десять лет, то статистическая вероятность события А будет равна

Геометрическое определение вероятности. Это определение вероятности обобщает классическое определение на случай, когда пространство элементарных исходов включает несчетное множество элементарных событий, и появления каждого из событий одинаково возможно. Геометрической вероятностью события А называется отношение меры (А) области, благоприятствующей появлению события, к мере () всей области

Если области представляют собой а) длины отрезков, б) площади фигур, в) объемы пространственных фигур, то геометрические вероятности соответственно равны

Пример 1.16. Рекламные объявления развешены с интервалом в 10 метров вдоль торгового ряда. Широта обзора у некоторого покупателя составляет 3 метра. Какова вероятность того, что он не заметит рекламу, если он движется перпендикулярно торговому ряду и пересечь ряд может в любой точке?

Участок торгового ряда, расположенный между двумя объявлениями, можно представить как отрезок прямой АВ (рис. 1.6). Тогда для того, чтобы покупатель заметил объявления, он должен пройти через отрезки прямых АС или ДВ, равные 3м. Если же он пересечет торговый ряд в одной из точек отрезка СД, длина которого 4м, то он не заметит рекламы. Вероятность этого события будет

Выше отмечено, что классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

В первую очередь это события, которые не являются равновозможными исходами испытания. Например, если монета сплющена, то, очевидно, события «появление герба» и «появление решки» при подбрасывании монеты нельзя считать равновозможными, и формула (1. 1) для расчета вероятности любого из них окажется неприменима.

Но есть и другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях.

Статистической вероятностью события А называется относительная частота (частость ) появления этого события в п произведенных испытаниях , т.е.

где Р(Л) - статистическая вероятность события A; w(A) - относительная частота (частость) события Ат - число испытаний, в которых появилось событие А;п - общее число испытаний.

В отличие от «математической» вероятности Р(А), рассматриваемой в классическом определении (1. 1), статистическая вероятность Р(Л) является характеристикой опытной , экспериментальной. Если Р(А) есть доля случаев, благоприятствующих событию Л, которая определяется непосредственно, без каких-либо испытаний, то PIA) есть доля тех фактически произведенных испытаний, в которых событие А появилось.

Согласно статистическому определению вероятность события есть предел 1 относительной частоты (частости) события при неограниченном увеличении числа испытаний , т.е.

Это означает, чтопри достаточно большом числе испытаний п можно считать, что

Статистическое определение вероятности, как и понятия и методы теории вероятностей в целом, применимы не к любым событиям с неопределенным исходом, которые в житейской практике считаются случайными, а только к тем из них, которые обладают определенными свойствам и .

1. Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий. Так, например, бессмысленно ставить вопрос об определении вероятностей возникновения войн, появления гениальных произведений искусства и т.п., так как речь идет о неповторимых в одинаковых условиях испытаниях, уникальных событиях. Или, например, нс имеет смысла говорить о том, что данный студент сдаст семестровый экзамен по теории вероятностей, поскольку речь здесь идет о единичном испытании, повторить которое в тех же условиях нет возможности.

И хотя приведенные в примерах события с неопределенным исходом относятся к категории «может произойти, а может и не произойти», такими событиями теория вероятностей не занимается.

2. События должны обладать так называемой статистической устойчивостью , или устойчивостью относительных частот . Это означает, что в различных сериях испытаний относительная частота (частость) события изменяется незначительно (тем меньше, чем больше число испытаний), колеблясь около постоянного числа. Оказалось, что этим постоянным числом является вероятность события (об этом идет речь в теореме Бернулли, приведенной в гл. 6).

Факт приближения относительной частоты, или частости, события к его вероятности (1.1) при увеличении числа испытаний, сводящихся к схеме случаев, подтверждается многочисленными массовыми экспериментами, проводимыми разными лицами со времен возникновения теории вероятностей. Так, например, в опытах Бюффоиа (XVIII в.) относительная частота (частость) появления герба при 4040 подбрасываниях монеты оказалась равной 0,5069, в опытах Пирсона (XIX в.) при 23 000 подбрасываниях - 0,5005, практически не отличаясь от вероятности этого события, равной 0,5.

3. Число испытаний , в результате которых появляется событие Л, должно быть достаточно велико , ибо только в этом случае можно считать вероятность события Р(А) приближенно равной ее относительной частоте.

Резюмируя, можно сказать, что теория вероятностей изучает лишь такие события , в отношении которых имеет смысл не только утверждение об их случайности , но и возможна объективная оценка относительной частоты их появления. Так, утверждение, что при выполнении определенного комплекса условий? вероятность события равна р, означает не только случайность события Л, но и определенную , достаточно близкую к р , долю появлений события А при большом числе испытаний ; а значит, выражает определенную объективную (хотя и своеобразную) связь между комплексом условий 5* и событием А (не зависящую от субъективных суждений о наличии этой связи того или иного лица). И даже просто существование вероятности р (когда само значение р неизвестно) сохраняет качественно суть этого утверждения, выделенную курсивом.

Легко проверить, что свойства вероятности (см. (1.2)), вытекающие из классического определения (1. 1), сохраняются и при статистическом определении вероятности (1.3").

Наряду с классическим и статистическим определениями вероятности в приложениях математики иногда рассматривают так называемую субъективную вероятность как степень уверенности в наступлении того или иного события на основе обработки мнений экспертов. При таком подходе можно говорить о субъективной вероятности (а точнее, субъективной возможности) появления уникальных событий - результатов (исходов) неповторимых в одинаковых условиях испытаний. Субъективная вероятность может быть использована, например, при прогнозировании доходности активов, прибыли от инвестиций и т.и.

  • Понятие, т.е. сходимости, в теории вероятностей существенно отличается от классического, рассматриваемого в курсе математического анализа (подробнее об этом см. параграфы 6.3, 6.4).
  • В прикладной литературе выполнение приводимых ниже свойств событий с неопределенным исходом в исследуемой реальной действительности иногда называют условиямидействия статистического ансамбля.

Показатель ранговой корреляции Кендалла, проверка соответствующей гипотезы о существенности связи.

2.Классическое определение вероятности. Свойства вероятности.
Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Поставим перед собой задачу дать количественную оценку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовемэлементарным исходом (элементарным событием) . Элементарные исходы обозначим через w 1 , w 2 , w 3 и т.д. В нашем примере возможны следующие 6 элементарных исходов: w 1 - появился белый шар; w 2 , w 3 - появился красный шар; w 4 , w 5 , w 6 - появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию A (появлению цветного шара) следующие 5 исходов: w 2 , w 3 , w 4 , w 5 , w 6 .

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих A; в нашем примере А наблюдается, если наступит w 2 , или w 3 , или w 4 , или w 5 , или w 6 . В этом смысле событие А подразделяется на несколько элементарных событий (w 2 , w 3 , w 4 , w 5 , w 6); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (A) = 5 / 6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.



Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

где m - число элементарных исходов, благоприятствующих A; n - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу. Из определения вероятности вытекают следующие ее свойства:

С в о й с т в о 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n, следовательно,

Р (A) = m / n = n / n = 1.

С в о й с т в о 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Р (А) = m / n = 0 / n = 0.

С в о й с т в о 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей .

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m / n < 1, следовательно,

0 < Р (А) < 1

Итак, вероятность любого события удовлетворяет двойному неравенству

З а м е ч а н и е. Современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Ограничимся изложением на языке теории множеств тех понятий, которые рассмотрены выше.

Пусть в результате испытания наступает одно и только одно из событий w i , (i = 1, 2, ..., n). События w i , называют элементарными событиями (элементарными исходами) . Уже отсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называютпространством элементарных событий W, а сами элементарные события - точками пространства W.

Событие А отождествляют с подмножеством (пространства W), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество W, элементы которого есть исходы, благоприятствующие В, и т.д. Таким образом, множество всех событий, которые могут наступить в испытании, есть множество всех подмножествW. Само W наступает при любом исходе испытания, поэтому W - достоверное событие; пустое подмножество пространства W - невозможное событие (оно не наступает ни при каком исходе испытания).

Заметим, что элементарные события выделяются из числа всех событий тем, что каждое из них содержит только один элемент W.

Каждому элементарному исходу w i , ставят в соответствие положительное число p i - вероятность этого исхода, причем

По определению, вероятность Р(А) события А равна сумме вероятностей элементарных исходов, благоприятствующих А. Отсюда легко получить, что вероятность события достоверного равна единице, невозможного - нулю, произвольного - заключена между нулем и единицей.

Рассмотрим важный частный случай, когда все исходы равновозможны. Число исходов равно n, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1 / n. Пусть событию А благоприятствует m исходов. Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

Р (А) = 1 / n + 1 / n + .. + 1 / n.

Учитывая, что число слагаемых равно m, имеем

Р (А) = m / n.

Получено классическое определение вероятности.

Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности. В системе аксиом, предложенной А. Н. Колмогоровым, неопре-деляемыми понятиями являются элементарное событие и вероятность. Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р (А). Это число называется вероятностью события А.

2. Вероятность достоверного события равна единице:

3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей и зависимости между ними выводят в качестве теорем.

3.Статическое определение вероятности, относительная частота.

Классическое определение не требует проведения опыта. В то время как реальные прикладные задачи имеют бесконечное число исходов, и классическое определение в этом случае не может дать ответа. Поэтому в таких задачах будем использовать статическое определение вероятностей , которое подсчитывают после проведения эксперимента или опыта.

Статической вероятностью w(A) или относительной частотой называют отношение числа благоприятных данному событию исходов к общему числу фактически проведенных испытаний.

w (A )=nm

Относительная частота события обладает свойством устойчивости :

limn →∞P (∣ ∣ nm p ∣ ∣ <ε)=1 (свойство устойчивости относительной частоты)

4.Геометрические вероятности.

При геометрическом подходе к определению вероятности в качестве пространства элементарных событий рассматривается произвольное множество конечной лебеговой меры на прямой, плоскости или пространстве. Событиями называются всевозможные измеримые подмножества множества .

Вероятность события А определяется формулой

где обозначает лебегову меру множества А. При таком определении событий и вероятностей все аксиомы А.Н.Колмогорова выполняются.

В конкретных задачах, которые сводятся к указанной выше вероятностной схеме, испытание интерпретируется как случайный выбор точки в некоторой области , а событие А – как попадание выбранной точки в некоторую подобласть А области . При этом требуется, чтобы все точки области имели одинаковую возможность быть выбранными. Это требование обычно выражается словами «наудачу», «случайным образом» и т.д.

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость более часто будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n-достаточно большое число, скажем n=1000 или n=5000), подсчитать число выпадений трех очков n 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равной n 3 /n – относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов – единицы, двойки, четверки и т.д. Теоретически такой образ действий можно оправдать, если ввести статистическое определение вероятности.

Вероятность P(w i) определяется как предел относительной частоты появления исхода w i в процессе неограниченного увеличения числа случайных экспериментов n, то есть

где m n (w i) – число случайных экспериментов (из общего числа n произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исхода w i .

Так как здесь не приводится никаких доказательств, мы можем только надеяться, что предел в последней формуле существует, обосновывая надежду жизненным опытом и интуицией.

В практике очень часто возникают задачи, в которых какой-либо другой способ определения вероятности события, кроме статистического определения, найти невозможно или крайне трудно.

Непрерывное вероятностное пространство.

Как уже говорилось ранее, множество элементарных исходов может быть более, чем счетным (то есть несчетным). Так несчётное множество исходов имеет эксперимент, состоящий в случайном бросании точки на отрезок . Можно себе представить, что эксперимент, заключающийся в измерении температуры в заданный момент в заданной точке тоже имеет несчётное число исходов (действительно, температура может принять любое значение из некоторого промежутка, хотя в действительности мы можем измерять её лишь с определённой точностью, и практическая реализация такого эксперимента даст конечное число исходов). В случае эксперимента с несч ётным множеством W элементарных исходов нельзя считать любое подмножество множества W событием. Следует заметить, что подмножества W, не являющиеся событиями, являются математическими абстракциями и не встречаются в практических задачах. Поэтому в нашем курсе данный параграф является необязательным.

Чтобы ввести определение случайного события, рассмотрим систему (конечную или счетную) подмножеств пространства элементарных исходов W.

В случае выполнения двух условий:

1) из принадлежности А этой системе следует принадлежность этой системе;

2) из принадлежности и этой системе следует принадлежность A i A j этой системе

такая система подмножеств называется алгеброй.

Пусть W - некоторое пространство элементарных исходов. Убедитесь в том, что две системы подмножеств:

1) W, Æ; 2) W, А, , Æ (здесь А- подмножествоW) являются алгебрами.

Пусть A 1 и A 2 принадлежат некоторой алгебре. Докажите, что A 1 \ A 2 и принадлежат этой алгебре.

Назовём s-алгеброй систему Á подмножеств множества W, удовлетворяющую условию 1) и условию 2)¢:

2)¢ если подмножества А 1 , А 2 ,¼, А n , ¼принадлежат Á, то их счётное объединение (по аналогии с суммированием это счётное объединение кратко записывается формулой ) тоже принадлежит Á.

Подмножество А множества элементарных исходов W является событием, если оно принадлежит некоторой s-алгебре.

Можно доказать, что если выбрать любую счётную систему событий, принадлежащих некоторой s-алгебре и проводить с этими событиями любые принятые в теории множеств операции (объединение, пересечение, взятие разности и дополнения), то результатом будет множество или событие, принадлежащее той же s-алгебре.

Сформулируем аксиому, называемую аксиомой А.Н. Колмогорова.

Каждому событию соответствует неотрицательное и не превосходящее единицы число P(А), называемое вероятностью события А, причем функция P(А) обладает следующими свойствами:

2) если события A 1 , A 2 ,..., A n , ¼ несовместны, то

Если задано пространство элементарных исходов W, алгебра событий и определенная на ней функция Р, удовлетворяющая условиям приведенной аксиомы, то говорят, что задано вероятностное пространство.

Это определение вероятностного пространства можно перенести на случай конечного пространства элементарных исходов W. Тогда в качестве алгебры можно взять систему всех подмножеств множества W.

Геометрическая вероятность

В одном специальном случае дадим правило расчёта вероятности события для случайного эксперимента с несчетным множеством исходов.

Если между множеством W элементарных исходов случайного эксперимента и множеством точек некоторой плоской фигуры S (сигма большая) можно установить взаимно-однозначное соответствие, а также можно установить взаимно-однозначное соответствие между множеством элементарных исходов, благоприятствующих событию А, и множеством точек плоской фигуры s (сигма малая), являющейся частью фигуры S, то

где s – площадь фигуры s, S - площадь фигуры S. Здесь, естественно, подразумевается, что фигуры S и s имеют площади. В частности, например, фигура s может представлять собой отрезок прямой линии, с площадью, равной нулю.

Заметим, что в этом определении вместо плоской фигуры S можно рассматривать промежуток S, а вместо её части s – промежуток s, целиком принадлежащий промежутку s, и вероятность представлять как отношение длин соответствующих промежутков.

Пример. Два человека обедают в столовой, которая открыта с 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x - время прихода первого в столовую, а y - время прихода второго .

Можно установить взаимно-однозначное соответствие между всеми парами чисел (x;y) (или множеством исходов) и множеством точек квадрата со стороной, равной 1, на координатной плоскости, где начало координат соответствует числу 12 по оси X и по оси Y, как изображено на рисунке 6. Здесь, например, точка А соответствует исходу, заключающемуся в том, что первый пришел в 12.30, а второй - в 13.00. В этом случае, очевидно, встреча не состоялась.

Если первый пришел не позже второго (y ³ x), то встреча произойдет при условии 0 £ y - x £ 1/6 (10 минут– это 1/6 часа).

Если второй пришел не позже первого (x³y), то встреча произойдет при условии 0 £ x – y £ 1/6..

Между множеством исходов, благоприятствующих встрече, и множеством точек области s, изображенной на рисунке7 в заштрихованном виде, можно установить взаимно-однозначное соответствие.

Искомая вероятность p равна отношению площади области s к площади всего квадрата. Площадь квадрата равна единице, а площадь области s можно определить как разность единицы и суммарной площади двух треугольников, изображенных на рисунке7. Отсюда следует:

Задачи с решениями.

На шахматную доску с шириной клетки 5см брошена монета радиуса 1,5см. Найти вероятность того, что монета не попадёт ни на одну границу клетки.

Задача II.

Через реку шириной 100 м перекинут мост. В некоторый момент, когда на мосту находятся два человека, мост рушится, и оба они падают в реку. Первый умеет плавать и спасётся. Второй плавать не умеет, и спасётся, только если упадёт не далее 10-ти метров от берега или не далее, чем в 10-ти метрах от первого. Какова вероятность, что второй человек спасётся?

Задача III.

Противотанковые мины поставлены на прямой через 15 м. Танк шириной в 2 м. едет перпендикулярно этой прямой. Какова вероятность, что он не подорвется на мине?

Задача VI.

На промежутке (0; 2) случайным образом выбираются два числа. Найти вероятность того, что квадрат большего числа меньше, чем меньшее число

На отрезок бросаются наудачу две точки. Они разбивают отрезок на три части. Какова вероятность того, что из полученных отрезков можно составить треугольник?

Задача VI.

На отрезок бросают наудачу три точки, одну за другой. Какова вероятность того, что третья по счёту точка упадёт между двумя первыми?

Задача I. Положение монеты на шахматной доске полностью определяется положением её геометрического центра. Всё множество исходов можно изобразить в виде квадрата S со стороной 5. Всё множество благоприятных исходов тогда изображается в виде квадрата s, лежащего внутри квадрата S, как это изображено на рисунке 1.

Искомая вероятность тогда равна отношению площади малого квадрата к площади большого квадрата, то есть, 4/25

Задача II. Обозначим через х расстояние от левого берега реки до точки падения первого человека, а через у – расстояние от левого берега до точки падения второго человека. Очевидно, что и х, и у принадлежат промежутку (0;100). Таким образом, можно заключить, что всё множество исходов можно отобразить на квадрат, левый нижний угол которого лежит в начале координат, а правый верхний – в точке с координатами (100;100). Две полосы: 0x, то есть второй упал ближе к правому берегу, чем первый, то для того, чтобы он был спасён, должно выполняться условие у<х+10. Если ух–10. Из сказанного следует, что все благополучные для второго человека исходы отображаются в заштрихованную область на рисунке 2. Площадь этой области легче всего подсчитать, вычитая из площади всего квадрата площади двух незаштрихованных треугольников, что даёт в результате 10000–6400=3600. Искомая вероятность равна 0,36.

Задача III.

По условию задачи положение танка на промежутке между двумя соседними минами полностью определяется положением прямой линии, равноотстоящей от бортов танка. Эта линия перпендикулярна линии, по которой установлены мины, и танк подрывается на мине, если эта линия расположена ближе, чем в 1-м метре от края промежутка. Таким образом, всё множество исходов отображается в промежуток длиной 15, а множество благоприятных исходов отображается в промежуток длиной 13, как показано на рисунке 3, Искомая вероятность равна 13/15.

Задача IV.

Обозначим одно из чисел х, а другое – у. Всё множество возможных исходов отображается в квадрат ОBCD , две стороны которого совпадают с осями координат и имеют длину, равную 2, как показано на рисунке 4. Допустим, что у–меньшее число. Тогда множество исходов отображается в треугольник ОCD с площадью, равной 2. Выбранные числа должны удовлетворять двум неравенствам:

у<х, у>х 2

Множество чисел, удовлетворяющих этим неравенствам отображается в заштрихованную область на рисунке 4. Площадь этой области определяется как разность площади треугольника OEG, равной 1/2, и площади криволинейного треугольника OFEG. Площадь s этого криволинейного треугольника определяется формулой

и равна 1/3. Отсюда получаем, что площадь заштрихованной фигуры OEF равна 1/6. Таким образом, искомая вероятность равна 1/12.

Пусть длина отрезка равна l. Если принять за х и у расстояния от левого конца отрезка до точек, о которых говорится в условии задачи, то множество всех исходов можно отобразить на квадрат со стороной l, одна из сторон которого лежит на координатной оси х, а другая – на координатной оси у. Если принять условие у>х, то множество исходов отобразится на треугольник OВС, изображенный на рисунке 5. Площадь этого треугольника равна l 2 /2. Полученные отрезки будут иметь длины: х, у–х и l-у. Теперь вспомним геометрию. Из трёх отрезков можно составить треугольник тогда и только тогда, когда длина каждого отрезка меньше суммы длин двух других отрезков. Это условие в нашем случае приводит к системе трёх неравенств

Первое неравенство преобразуется к виду хl/2, а третье неравенство – к виду у<х+l/2. Множество пар чисел х, у, являющееся решением системы неравенств отображается в заштрихованный треугольник на рисунке 5. Площадь этого треугольника в 4 раза меньше площади треугольника OВС. Отсюда следует, что ответ задачи составляет 1/4.


Задача VI.

Примем длину отрезка за l. Пусть расстояние от левого конца отрезка до первой точки равно х, до второй точки – у, а до третьей точки – z. Тогда всё множество исходов отображается в куб, три ребра которого лежат на осях х, у и z прямоугольной системы координат, и с ребром длиной l. Допустим, что у>х. Тогда множество исходов отобразится в прямую призму АВСА 1 В 1 С 1 , изображенную на рисунке 6. Условие z>x означает, что все исходы будут отображаться в область, лежащую выше плоскости AD 1 C 1 B, показанной на рисунке 7. Эта плоскость Теперь все допустимые исходы будут отображаться в пирамиду с квадратом АА 1 В 1 В в основании и с высотой В 1 С 1 . Все исходы, удовлетворяющие условию z

Задачи для самостоятельного решения.

1. Два парохода должны подойти к одному и тому же причалу. Время прихода обоих пароходов независимо и равновозможно в течение данных суток. Определить вероятность того, что одному из пароходов придется ожидать освобождения причала, если время стоянки первого парохода – один час, а второго – два часа. Ответ: 139/1152.

2. На перекрестке установлен автоматический светофор, в котором одну минуту горит зеленый свет и полминуты красный, затем снова одну минуту - зеленый и полминуты красный и т.д. В случайный момент времени к перекрестку подъезжает автомобиль. Какова вероятность того, что он проедет перекресток без остановки? Ответ: 2/3

3. На бесконечную шахматную доску с шириной клетки 5см брошена монета радиуса 1,5см. Найти вероятность того, что монета расположится не более чем в двух клетках шахматной доски. Ответ: 16/25.

4. В окружность наудачу вписывается треугольник. Какова вероятность, что он остроугольный? Ответ: 1/4.

5. В окружность наудачу вписывается треугольник. Какова вероятность, что он прямоугольный? Ответ: 0.

6. Стержень длины а наудачу разломан на три части. Найдите вероятность того, что длина каждой части окажется больше а/4. Ответ: 1/16.